- Edited
About pixel inversion:
https://display-corner.epfl.ch/index.php/LCD_dynamics
The open/close state of a (sub-)pixel cell is controlled by a voltage, where the amount of light being blocked by the cell only depends on the absolute voltage but is independent of the voltage polarity. However, the liquid crystal fluid in the cell actually degrades if the mean voltage is different from zero, which is why the voltage polarity has to be inverted at a high enough frequency. In a monitor, the polarity is inverted at the monitor's refresh frequency. It appears to be technically difficult though to meet exactly the same absolute voltage levels at both polarities, even for static image content. Any residual difference in absolute voltages causes an according difference in the cell states and, thus, in pixel luminance. These luminance fluctuations might be perceived as an according pixel flickering at half the refresh frequency. In order to make such flickering less apparent, both polarities are used at the same time but for different sub-pixels, so that potential differences can average out across space (i.e., across adjacent sub-pixels) and over time (i.e., over refresh cycles). Because the pattern of how polarities are distributed across sub-pixels is very regular, pixel-inversion artifacts can still become quite obvious, especially if the temporal averaging is compromised by eye movements of certain velocities, which makes the spatial polarity distribution pattern become more apparent for short periods of time. Pixel-inversion artifacts, or more generally, voltage stability artifacts, can also surface in other forms, like color shifts or cross-talk within pixel rows or columns. These artifacts possibly show up under only very specific circumstances, which makes testing and quantification difficult. Although high pixel densities and high refresh rates both can help in hiding pixel-inversion artifacts, those features also make it technically more challenging to avoid such artifacts in the first place.
So if your eye movements are not at the "certain velocities", then will this help with avoiding eyestrain?